Go 泛型编程:泛型设计
原文链接:https://golang3.eddycjy.com/posts/generics/
引言
Go1.18 的泛型是闹得沸沸扬扬,如今已经基本成型,就由煎鱼带大家一起摸透 Go 泛型。
本文内容主要涉及泛型的 3 大设计理念,4 大元素,值得大家深入学习。
分别是:
- 设计理念:
- 类型参数。
- 类型约束。
- 类型推导。
- 语法元素:
- 联合元素。
- 近似元素。
- 嵌入约束。
- 接口类型。
类型参数
类型参数,这个名词。不熟悉的小伙伴咋一看就懵逼了。
泛型代码是使用抽象的数据类型编写的,我们将其称之为类型参数。当程序运行通用代码时,类型参数就会被类型参数所取代。也就是类型参数是泛型的抽象数据类型。
简单的泛型例子:
|
|
代码有一个 Print
函数,它打印出一个片断的每个元素,其中片断的元素类型,这里称为 T,是未知的。
这里引出了一个要做泛型语法设计的点,那就是:T 的泛型类型参数,应该如何定义?
在现有的设计中,分为两个部分:
- 类型参数列表:类型参数列表将会出现在常规参数的前面。为了区分类型参数列表和常规参数列表,类型参数列表使用方括号而不是小括号。
- 类型参数约束:如同常规参数有类型一样,类型参数也有元类型,被称为约束(后面会进一步介绍)。
结合完整的例子如下:
|
|
在上述代码中,我们声明了一个函数 Print
,其有一个类型参数 T,类型约束为 any
,表示为任意的类型,作用与 interface{}
一样。他的入参变量 s
是类型 T 的切片。
函数声明完了,在函数调用时,我们需要指定类型参数的类型。如下:
|
|
在上述代码中,我们指定了传入的类型参数为 int,并传入了 []int{1, 2, 3}
作为参数。
其他类型,例如 float64:
|
|
也是类似的声明方式,照着套就好了。
类型约束
说完类型参数,我们再说说 “约束”。在所有的类型参数中都要指定类型约束,才能叫做完整的泛型。
以下分为两个部分来具体展开讲解:
- 定义函数约束。
- 定义运算符约束
为什么要有类型约束
为了确保调用方能够满足接受方的程序诉求,保证程序中所应用的函数、运算符等特性能够正常运行。
泛型的类型参数,类型约束,相辅相成。
定义函数约束
问题点
我们看看 Go 官方所提供的例子:
|
|
该方法的实现目的是:任何类型的切片都能转换成对应的字符串切片。但程序逻辑里有一个问题,那就是他的入参 T 是 any
类型,是任意类型都可以传入。
其内部又调用了 String
方法,自然也就会报错,因为只像是 int、float64 等类型,就可能没有实现该方法。
你说要定义有效的类型约束,那像是上面的例子,在泛型中如何实现呢?
要求传入方要有内置方法,就得定义一个 interface
来约束他。
单个类型
例子如下:
|
|
在泛型方法中应用:
|
|
再将 Stringer
类型放到原有的 any
类型处,就可以实现程序所需的诉求了。
多个类型
如果是多个类型约束。例子如下:
|
|
与常规的入参、出参类型声明一样的规则。
定义运算符约束
完成了函数约束的定义后,剩下一个要啃的大骨头就是 “运算符” 的约束了。
问题点
我们看看 Go 官方的例子:
|
|
经过上面的函数例子,我们很快能意识到这个程序根本无法运行成功。
其入参是 any
类型,程序内部是按 slice 类型来获取值,且在内部又进行运算符比较,那如果真是 slice,内部就可能每个值类型都不一样。
如果一个是 slice,一个是 int 类型,又如何进行运算符的值对比?
近似元素
可能有的同学想到了重载运算符,但…想太多了,Go 语言没有支持的计划。为此做了一个新的设计,那就是允许限制类型参数的类型范围。
语法如下:
|
|
例子如下:
|
|
上述声明的类型集是 ~int
,也就是所有类型为 int 的类型(如:int、int8、int16、int32、int64)都能够满足这个类型约束的条件。
包括底层类型是 int8 类型的,例如:
|
|
也就是在该匹配范围内的。
联合元素
如果希望进一步缩小限定类型,可以结合分隔符来使用,用法为:
|
|
就可以将类型集限定在 int8 和 int64 之中。
实现运算符约束
基于新的语法,结合新的概念联合和近似元素,可以把程序改造一下,实现在泛型中的运算符的匹配。
类型约束的声明,如下:
|
|
应用的程序如下:
|
|
确保了值均为基础数据类型后,程序就可以正常运行了。
类型推导
程序员写代码,一定程度的偷懒是必然的。
在一定的场景下,可以通过类型推导来避免明确地写出一些或所有的类型参数,编译器会进行自动识别。
建议复杂函数和参数能明确是最好的,否则读代码的同学会比较麻烦,可读性和可维护性的保证也是工作中重要的一点。
参数推导
函数例子。如下:
|
|
公共代码片段。如下:
|
|
明确指定两个类型参数。如下:
|
|
只指定第一个类型参数,变量 f 被推断出来。如下:
|
|
不指定任何类型参数,让两者都被推断出来。如下:
|
|
约束推导
神奇的在于,类型推导不仅限与此,连约束都可以推导。
函数例子,如下:
|
|
基于此的推导案例,如下:
|
|
MySlice 是一个 int 的切片类型别名。变量 V1 的类型编译器推导后 []int 类型,并不是 MySlice。
原因在于编译器在比较两者的类型时,会将 MySlice 类型识别为 []int,也就是 int 类型。
要实现 “正确” 的推导,需要如下定义:
|
|
基于此的推导案例。如下:
|
|
只要定义显式类型参数,就可以获得正确的类型,变量 V2 的类型会是 MySlice。
那如果不声明约束呢?如下:
|
|
编译器通过函数参数进行推导,也可以明确变量 V3 类型是 MySlice。
关键名词
原本 @Ian Lance Taylor 设计的的泛型类型关键字如下:
|
|
看起来好像非常 “顺眼”。但在《proposal: Go 2: sum types using interface type lists》中社区进行了热烈的讨论。
认为该类型约束的关键字,过于 “模棱两可”。像是 @Damien Neil 所提出的以下两个例子。
结构体的例子:
|
|
不明确的点之一,如果类型列表包含一个未导出的类型,那又应该是如何处理呢?
接口的例子:
|
|
你认为程序会跑进哪个 switch-case 的代码块里呢,是 int16,还是 int32?
不,都不会,变量 x 是 nil,如此迷惑。
在社区讨论中,发现设计与真实场景一结合,发现这个类型规则在普通的接口类型、在约束中使用也太微妙了。
用类型列表嵌入接口时的行为也很奇怪。认为可以做的更好,那就是 “更显式”。
为此,Go 泛型的设计者 @Ian Lance Taylor 提出了一个新的提案《spec: generics: use type sets to remove type keyword in constraints》。
其包含三个新的、更简单的想法来取代泛型提案中定义的类型列表,成为了正式泛型语法。
语法定义
新语法在泛型处增加一个新概念:接口元素(interface elements),用作约束条件的接口类型,或者被嵌入约束条件的接口类型,允许嵌入一些额外的构造。
被嵌入的可以是:
- 任何类型,而不仅仅是一个接口类型。
- 一个新的句法结构,称为近似元素。
- 一个新的句法结构,称为联合元素。
重点名词,我们继续展开讲解,分别是:
- 嵌入约束。
- 近似元素。
- 联合元素。
- 接口类型。
联合元素
原先的语法中,类型约束会用逗号分隔的方式来展示。
如下:
|
|
在新语法中,结合定义为 union element(联合元素),写成一系列由竖线 ”|“ 分隔的类型或近似元素。
如下:
|
|
常常会和下面讲到的近似元素一起使用。
近似元素
新语法,他的标识符是 “~”,完整用法是 ~T
。~T
是指底层类型为 T 的所有类型的集合。例如:
|
|
他的类型集是 ~int
,也就是所有类型为 int 的类型(如:int、int8、int16、int32、int64)都能够满足这个类型约束的条件,包括底层类型为 int 类型的(例如:类型别名)。
再结合以上的分隔来使用,用法为:
|
|
相当于泛型提案中使用的以下类型:
|
|
新语法只需借助近似标识符 ~int
来表达就可以了,更明确的表示了近似匹配,而不是存在隐式理解。
嵌入约束
一个类型约束可以嵌入另一个约束,联合元素可以包括约束。
例如:
|
|
这个很好理解,就是正式支持嵌入约束了。
接口类型(联合约束元素)
在联合元素中,使用接口类型的话。将会把该类型集添加到联合中。
例如:
|
|
Stringish 的类型集将是字符串类型和所有实现 fmt.Stringer
的类型,任何这些类型(包括 fmt.Stringer
本身)将被允许作为这个约束的类型参数。
也就是针对接口类型做了特殊的处理。
总结
今天我们在文章中给大家介绍了泛型的三个重要概念,分别是:
- 类型参数:泛型的抽象数据类型。
- 类型约束:确保调用方能够满足接受方的程序诉求。
- 类型推导:避免明确地写出一些或所有的类型参数。
在内容中也涉及到了联合元素、近似元素、函数约束、运算符约束等新概念。本质上都是基于三个大概念延伸出来的新解决方法,一环扣一环。
你学会 Go 泛型了吗,设计的如何,欢迎一起讨论:)
参考
- 原文作者:maratrix
- 原文链接:https://maratrix.cn/post/2022/03/27/go-generics-design/
- 版权声明:本作品采用知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议进行许可,非商业转载请注明出处(作者,原文链接),商业转载请联系作者获得授权。